## 

## Spillover Spread

## Zosia Maciorowski Institut Curie <br> Paris, France



## Resolution and Spread

Important in multicolor flow cytometry is ability to resolve populations: the degree to which a flow cytometer can distinguish unstained from dimly stained in a mixture.

Negative population has low background populations well resolved

Negative population has high background
populations not resolved

Negative population ha slow background but high rSD (spread)
populations not resolved


Resolution is a function of
position of the positive population
position and spread of the negative population.

## Factors affecting Background Position and Spread

| Instrument factors |
| :--- |
| Electronic noise |
| Optical background |
| Gain settings (PMT) |

Cell and staining factors

Spread due to spillover
Fluorochrome
Antigen density
Autofluorescence
Nonspecific staining

## Reminder: Titration and gain optimization

Antibody concentration and detector gains will affect background spread:
Your antibodies should be titrated and your PMT gains optimized for each color
To maximize sensitivity and resolution
To decrease background spread

## Adjusting PMTV To Maximize SI

FITC Detector


| PMT Voltage | 373 | 473 | 573 |
| ---: | :---: | :---: | :---: |
| Stain Index | 15 | 39 | 42 |
| MFI Pos Cells | 750 | 5072 | 21183 |
| MFI Neg Cells | 15 | 94 | 415 |
| rSD Neg Cells | 24 | 64 | 245 |

Factors affecting Background Position and Spread

| Instrument factors |
| :--- |
| Electronic noise |
| Optical background |
| Gain settings (PMT) |

## Cell and staining factors

Spread due to spillover Fluorochrome Antigen density
Autofluorescence
Nonspecific staining

## Spillover Introduces Background Spread Into Other Detectors

We can compensate for fluorochrome spillover but we cannot eliminate spread



|  | Negative |  | Positive |  |
| :--- | :---: | ---: | ---: | ---: |
|  | MFI | rSD | MFI | rSD |
| No Comp | 12 | 29 | 3098 | 291 |
| Comp | 4 | 29 | 3 | 289 |

Spread is caused by spillover not removed by compensation reduces resolution of double positives


Although this peak looks tight This is in log scale: range and spread is over 10,000 channels up here

This range and spread Is maintained after compensation but is much more apparent In the low channels

PE-Texas Red


The effect of spread
can been seen in the width of the Pe-TxRed positive population in the PE channel

A double positive population would have to be above channel 2000 to be detectable

No problem for the Pe-TxRed negative population

## What affects spread?

1. Amount of spillover between fluorochromes
2. Staining intensity, which depends on:
A. Fluorochrome brightness
B. Antigen Density
3. The Cytometer

Stain Index and spread values differ from cytometer to cytometer
Due to: laser wavelength and power
filters
detectors

## 1.Is there Spillover? Look at your spectra!

Adjacent spectra
$\underbrace{200}_{8}$


PE-Cy5 into PE PeCY5 emission

## 3

Cross laser excitation


## 1. Spillover: PE-Cy5 Single Color

You can a good idea of where there will be a spillover problem by looking at the excitation and emission spectra


## 2. Staining intensity

## A. Fluorochrome Brightness

Despite differences across cytometers Fluorochromes can be grouped into: Brightest
Bright
Moderate
Dim

Some general information on brightness at:
http://www.biolegend.com/brightness index
http://static.bdbiosciences.com/documents/m ulticolor fluorochrome laser chart.pdf? ga=1. $\underline{193693357.1447862526 .1480066966}$


## 2. Staining intensity

## B. Antigen Density



Here it can be seen that
as the intensity of PE staining increases due to increased antigen density
so does the PE spread into the PE-CF594 channel
This makes it difficult to distinguish bright PE positive cells that are also dimly positive for PE-CF594.

The PE-CF594 cells must be very positive to be resolved.

## 3. Cytometer differences

Fluorochrome brightness varies from one cytometer to the next Even in a supposedly identical cytometer

| Fluorochrome | Brightness <br> $\times 10^{5}$ | Brightness <br> relative to PE | Cytain index |  |
| :---: | :---: | :---: | :---: | :---: |
| Cytoter 1 | Cytometer 2 |  |  |  |
| PE | 16 | $100 \%$ | 348 | 262 |
| PeCy5 | NA | NA | 180 | 131 |
| APC | 4.7 | $29 \%$ | 238 | 281 |
| FITC | 0.4 | $2 \%$ | 132 | 61 |
| BV421 | 16 | $100 \%$ | 264 | 145 |

## Spread variables

Amount of Spread Spillover

Brightness

I $\left(\begin{array}{ccc}\text { Antigen } & \times & \text { Fluorochrome } \\ \text { Density } & \text { Brightness }\end{array}\right)$

More colors $=$ more spread $=$ more problems Spread is additive:
the sum of all fluorochrome spreads into each channel

## Spread is not affected by PMT or Comp values



These is the same tube run at 3 different PMT Voltages
They have the same spread into the other detector

## Spillover Spread index vs Compensation

Pe-CY5 into APC detector


FITC into PE detector


Spread is not necessarily reflected by the compensation value can have similar compensation value between different parameters but very different SSI!

## How to assess Spread due to Spillover

Calculation of Spillover Spread is very useful to evaluate potential problems due to spread in the choice of fluorochromes for your own cytometer.

- Manual calculation according to Nguyen et al
- Automatic calculation using Flowjo 9

Both methods use compensated single color controls

Generation of a Spillover Spread Matrix (SSM) across all detectors
SSM valid across compensation and gain changes
SSM valid until laser, filter or detector change

# Cytometry <br> ART A <br>  <br> Atannsmertel Chamety 

# Quantifying Spillover Spreading for Comparing Instrument Performance and Aiding in Multicolor Panel Design 

Richard Nguyen, ${ }^{1}$ Stephen Perfetto, ${ }^{1}$ Yolanda D. Mahnke, ${ }^{2}$ Pratip Chattopadhyay, ${ }^{2}$ Mario Roederer ${ }^{2 *}$

'Flow Cytometry Core, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
${ }^{2}$ ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland

- Abstract

After compensation, the measurement errors arising from multiple fluorescences spilling into each detector become evident by the spreading of nominally negative distributions. Depending on the instrument configuration and performance, and reagents used, this "spillover spreading" (SS) affects sensitivity in any given parameter. The degree of SS had been predicted theoretically to increase with measurement error, i.e., by the

## Manual Calculation (Nguyen)


takes in account:

1. difference in spread of the (A) positive vs (B) negative populations in the spillover channel
2. normalized to the (C) median intensity difference between the two populations in the primary channel.

## Similar compensation: different spread



Just because you have a high compensation value does not mean you have high spread

## Spillover Spread Matrix (Flowjo)

| Detector |  | $\begin{gathered} \text { FITC } \\ \text { B527/32 } \end{gathered}$ | $\begin{gathered} \hline \text { PE } \\ \text { B586/42 } \end{gathered}$ | $\begin{gathered} \hline \text { PerCP } \\ \text { B700/54 } \end{gathered}$ | $\begin{gathered} \hline \text { PE-Cy7 } \\ \text { B783/56 } \\ \hline \end{gathered}$ | $\begin{gathered} \text { APC } \\ \text { R660/10 } \\ \hline \end{gathered}$ | $\begin{aligned} & \hline \text { APC-H7 } \\ & \text { R783/56 } \end{aligned}$ | $\begin{gathered} \text { V450 } \\ \text { V448/45 } \end{gathered}$ | $\begin{gathered} \hline \text { V500 } \\ \text { V528/45 } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fluorochrome | Stain Index |  |  |  |  |  |  |  |  |
| FITC | 583 |  | 1.41 | 0.37 | 0.72 |  | 0.11 |  | 2.77 |
| BB515 | 569 |  | 1.50 | 0.26 | 0.48 |  |  |  | 1.10 |
| PE | 2402 | 0.21 |  | 1.11 | 1.76 |  |  |  | 0.37 |
| PE-Cy5 | 2558 |  | 0.36 |  | 10.14 | 96.57 | 30.39 |  |  |
| PerCP | 174 |  | 0.15 |  | 5.86 | 2.20 | 2.01 |  |  |
| PerCP-Cy5.5 | 355 |  |  | IM $1 / 2$ | 11.05 | 2.26 | 13.78 |  |  |
| PE-Cy7 | 1409 |  | 0.16 | 0.12 |  |  | 10.32 |  |  |
| APC | 2072 |  |  | 0.84 | 0.80 |  | 2.67 |  |  |
| Alexa 647 | 1875 |  |  | 0.68 | 0.58 |  | 4.45 |  |  |
| APC-Cy7 | 578 |  |  |  | 3.50 | 0.93 |  |  |  |
| APC-H7 | 826 |  |  |  | 2.46 | 0.33 | MYM |  |  |
| Pac Blue | 100 |  |  |  |  |  |  |  | 2.18 |
| V450 | 103 |  |  |  |  | 0.12 | 0.19 |  | 1.86 |
| BV421 | 680 |  |  |  |  |  |  |  | 1.67 |
| V500 |  |  |  |  |  |  |  |  |  |
| BV510 | 154 | 0.26 | 0.13 |  | 0.16 |  |  |  |  |

Optimize multicolor panels for fluorochrome-combinations that show only low spread in channels with co-expressed markers (especially for highly expressed antigens)
Be careful using fluorochrome-combinations with significant or high spread into other detectors for antigens that are expressed on the same cell.

If combination cannot be avoided, try to use markers that are not co-expressed.

## Spread Matrix: Fortessa X-20: PE-Cy5

| Detector |  | BV421 | BV510 | BV605 | BV650 | BV711 | BV786 | FITC | PerCP | BUV395 | BUV496 | APC | Alexa 700 | APC-H7 | PE | PE-CF594 | PE-Cy5 | PE-Cy7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fluorochrome | Stain Index | v450/50 | V525/50 | V610/20 | V670/30 | V710/50 | V780/60 | B525/50 | B695/40 | UV1 | UV2 | R670/30 | R730/45 | R780/60 | YG586/15 | YG610/20 | YG670/30 | YG780/60 |
| Pac Blue | 29 |  | 1.9 | 1.6 | 1.2 | 0.8 | 0.6 |  |  |  | 0.6 |  | 0.5 |  | 0.3 | 0.3 |  | 0.2 |
| V450 | 44 |  | 1.6 | 1.4 | 0.6 | 0.9 | 0.9 |  |  |  | 0.9 |  | 0.8 | 0.4 |  |  | 0.4 |  |
| BV421 | 268 |  | 1.0 | 0.8 | 0.6 | 0.4 | 0.4 |  | 0.1 |  | 0.4 |  | 0.4 |  |  | 0.1 |  | 0.1 |
| V500 | 41 | 0.3 |  | 3.4 | 2.9 | 2.0 | 1.4 | 0.3 | 0.4 |  | 0.9 |  | 1.4 |  |  | 0.8 |  |  |
| BV510 | 127 | 0.8 |  | 5.0 | 4.5 | 3.2 | 2.5 |  | 0.7 | 0.2 | 2.3 | 0.7 | 2.7 |  | 0.2 | 1.3 | 0.2 |  |
| BV605 | 110 | 0.7 |  |  |  | 5.6 | 3.8 |  | 3.3 |  | 0.3 | 3.0 | 4.7 | 0.2 | 1.6 | 4.8 | 2.7 | 1.8 |
| BV650 | 188 | 0.7 |  | 3.0 |  | 7.5 | 5.0 |  | 2.3 |  | 0.3 | 5.3 | 7.9 | 1.2 | 0.1 | 1.0 | 1.9 | 1.2 |
| BV711 | 118 | 0.8 |  | 0.5 | $2.6$ | 9.6 |  |  | 3.6 |  | 0.4 | 2.5 | 16.6 | 3.1 |  |  | 0.5 | 1.4 |
| BV786 | 201 | 1.0 | 0.2 | 0.4 | 0.7 | 1.3 |  |  | 0.3 |  | 0.2 | 0.6 | 1.7 | 2.6 |  |  |  | 1.2 |
| FITC | 38 |  | 0.7 | 0.6 | 0.7 | 0.6 | 0.4 |  | 1.8 |  | 0.7 |  | 0.5 |  |  |  | 0.4 |  |
| BB515 | 82 |  | 0.4 | 0.3 | 0.3 | 0.3 | 0.2 |  | 1.0 |  | 0.7 |  |  |  |  |  |  | 0.2 |
| PerCP | 16 |  |  | 2.2 | 13.0 | 5.5 | 4.2 |  |  |  | 0.7 | 8.1 | 7.3 | 1.2 |  | 0.3 | 5.6 | 2.7 |
| PerCP-Cy5.5 | 42 |  |  | 1.0 | 5.5 | 7.5 | 5.3 |  |  |  | 0.4 | 5.4 | 8.7 | 2.3 |  |  | 2.3 | 3.3 |
| BUV395 | 159 |  |  | 0.2 | 0.5 | 0.3 |  |  | 0.3 |  | 0.9 |  |  |  | 0.1 |  | 0.3 |  |
| BUV496 | 107 | 0.3 | 3.0 | 1.6 | 1.1 | 0.8 | 0.6 | 1.2 | 0.2 | 2.9 |  |  | 0.8 |  | 0.1 | 0.4 |  |  |
| APC | 149 |  |  | 0.4 | 2.4 | 1.7 | 1.0 |  | 3.4 |  | 0.2 |  | 11.9 | 2.5 |  | 0.3 | 3.1 | 1.6 |
| Alexa 647 | 182 |  |  | 0.1 | 0.4 | 0.5 | 0.4 |  | 1.4 |  | 0.1 |  | 10.6 | 2.6 |  |  | 1.1 | 1.1 |
| Alexa 700 | 23 |  |  | 0.2 | 0.3 | 1.3 | 1.3 |  | 0.7 |  | 0.3 | 1.8 |  | 3.0 |  |  | 0.3 | 1.4 |
| APC-Cy7 | 27 |  |  |  | 0.4 | 0.5 | 2.9 |  | 0.7 |  |  | 3.2 | 5.0 |  |  |  | 0.7 | 5.2 |
| APC-H7 | 58 |  |  |  | 0.4 | 0.5 | 2.9 |  | 0.7 |  | 0.3 | 1.3 | 3.2 |  |  | 0.2 | 0.4 | 4.5 |
| PE | 313 |  | 0.2 | 2.9 | 2.3 | 2.4 | 0.8 | 1.5 | 6.1 |  | 0.2 | 4.2 | 1.1 |  |  | 10.7 | 4.0 | 1.9 |
| PE-CF594 | 253 | 0.2 |  | 2.4 | 2.5 | 2.8 | 1.0 |  | 7.7 |  | 0.2 | 5.3 | 1.4 | 0.2 | 1.6 |  | 4.8 | 2.7 |
| PE-Cy5 | 265 | 0.4 |  | 1.4 | 8.5 | 7.0 | 2.0 |  | 20.4 |  |  | 18.8 | 12.4 | 2.5 | 0.6 | 0.9 |  | 5.4 |
| PE-Cy7 | 461 |  |  |  | 0.1 | 0.3 | 3.0 |  | 0.5 |  | 0.2 | 0.3 | 1.0 | 2.1 | 0.4 | 0.6 | 0.3 |  |

PE-Cy5: high spread into a lot of channels, receives some spread AI700: receives a lot of spread

## Spread Matrix: Fortessa X-20: BV421



BV421: very little spread into other channels, receives very little spread

## Spillover Spread Summary

The amount of spread due to spillover depends on

Amount of spillover between fluorochromes

Staining intensity:
Fluorochrome brightness and antigen density

Cytometer characteristics
spread differs from cytometer to cytometer

