

International Society for Advancement of Cytometry

Spillover Spread

Zosia Maciorowski Institut Curie Paris, France

Resolution and Spread

Important in multicolor flow cytometry is ability to resolve populations: the degree to which a flow cytometer can distinguish unstained from dimly stained in a mixture.

Negative population has low background populations well resolved

Negative population has high background populations not resolved

Negative population ha slow background but high rSD (spread) populations not resolved

"Negative" Dim Bright Count solgasagasagas ر السبب 10⁵ ''|₀ 10⁰ 10⁴ -1.20410⁵ 10⁰ 10⁴ 1.007 Count spigasæpæsega

Resolution is a function of position of the positive population position *and* spread of the negative population.

Instrument factors

Electronic noise Optical background

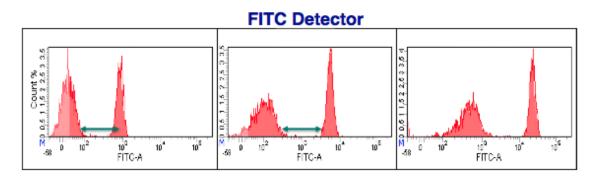
Gain settings (PMT)

Cell and staining factors

Spread due to spillover Fluorochrome Antigen density Autofluorescence

Nonspecific staining

Reminder: Titration and gain optimization


Antibody concentration and detector gains will affect background spread:

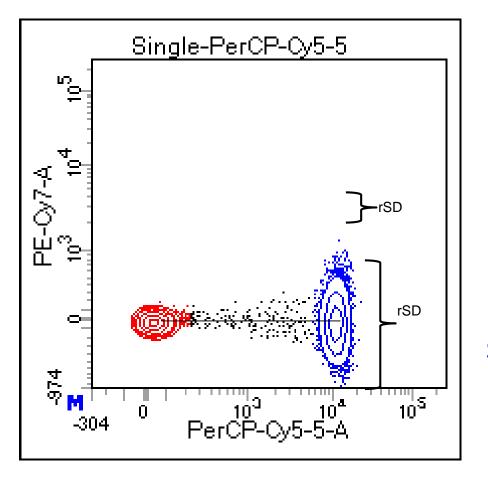
Your antibodies should be titrated and your PMT gains optimized for each color

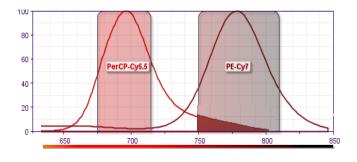
To maximize sensitivity and resolution

To decrease background spread

PMT Voltage	373	473	573
Stain Index	15	39	42
MFI Pos Cells	750	5072	21183
MFI Neg Cells	15	94	415
rSD Neg Cells	24	64	245

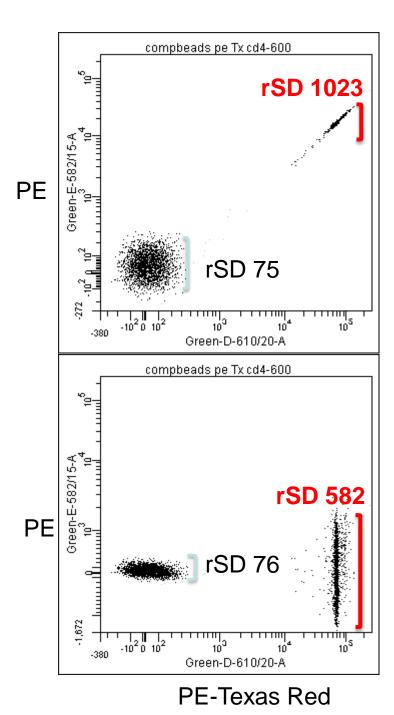
Instrument factors

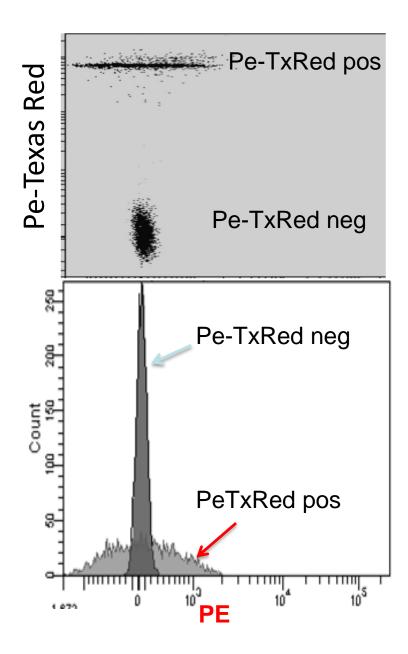

Electronic noise Optical background Gain settings (PMT) Cell and staining factors


Spread due to spillover Fluorochrome Antigen density Autofluorescence

Nonspecific staining

Spillover Introduces Background Spread Into Other Detectors


We can compensate for fluorochrome spillover but we cannot eliminate spread


	Neg	ative	PositiveMFIrSD3098291			
	MFI	rSD	MFI	rSD		
No Comp	12	29	3098	291		
Comp	4	29	3	289		

Spread is caused by spillover not removed by compensation reduces resolution of double positives

Although this peak looks tight This is in log scale: range and spread is over 10,000 channels up here

This range and spread Is maintained after compensation but is much more apparent In the low channels

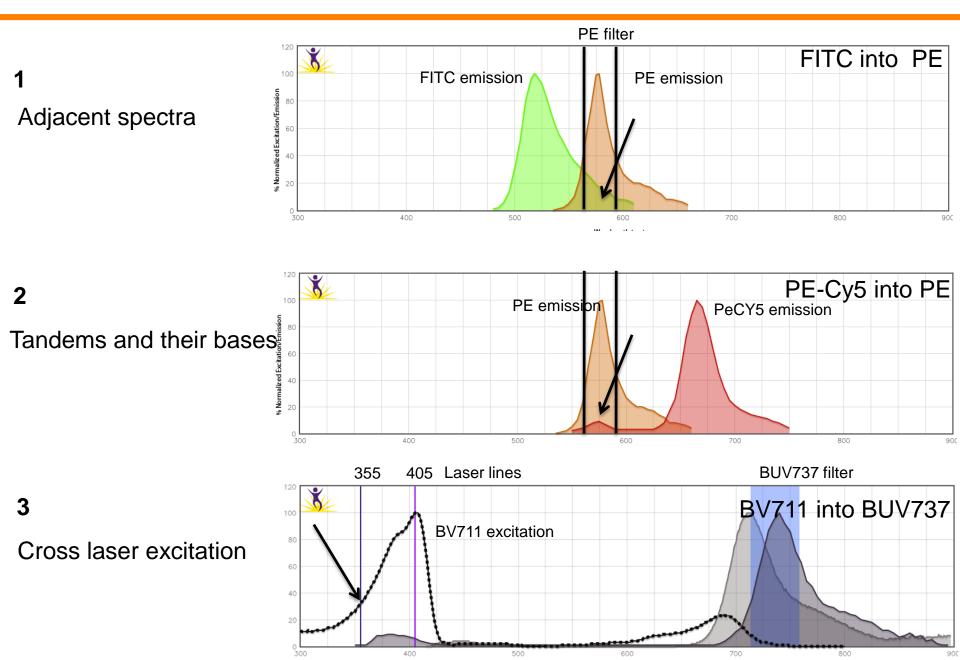
The effect of spread can been seen in the width of the Pe-TxRed positive population in the **PE** channel

A double positive population would have to be above channel 2000 to be detectable

No problem for the Pe-TxRed negative population

What affects spread?

1. Amount of spillover between fluorochromes


2. Staining intensity, which depends on:A. Fluorochrome brightnessB. Antigen Density

3. The Cytometer

Stain Index and spread values differ from cytometer to cytometer

- Due to: laser wavelength and power
 - filters
 - detectors

1.Is there Spillover? Look at your spectra!

1. Spillover: PE-Cy5 Single Color

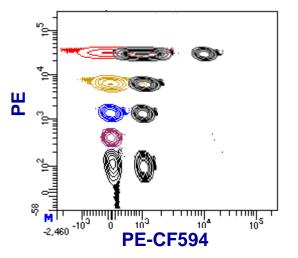
You can a good idea of where there will be a spillover problem by looking at the excitation and emission spectra Lasers 488 561 633 Adjacent spectra 100 800 (% 75 (%) 50 50 600 00 400 Relative 25 200 00 10³ 103 10⁴ 105 -103 -103 10⁴ . 10⁵ 0 0 500 700 800 300 400 600 PE-Cy7 Wavelength (nm) PE-Cy5 Cross laser excitation Tandem base 800 -300 600 300 200 400 200 100 100 200 10³ **____** 103 . 10⁴ 105 -103 105 104 -103 . 10³ . 10³ 105 0 0 104 0 APC Alexa700 PE

2. Staining intensity

A. Fluorochrome Brightness

Despite differences across cytometers Fluorochromes can be grouped into: Brightest Bright Moderate Dim

Some general information on brightness at:


http://www.biolegend.com/brightness_index

http://static.bdbiosciences.com/documents/m ulticolor fluorochrome laser chart.pdf? ga=1. 193693357.1447862526.1480066966

Relative Brightness		Reagent	Filter
		Brilliant Violet™ 421	450/50
		PE	575/26
ITEST		Brilliant Violet 605	610/20
BRIGHTEST		BD Horizon PE-CF594	610/20
		PE-Cy5	670/14
		APC	660/20
	-	PE-Cy7	780/60
BRIGHT		Alexa Fluor® 647	660/20
		PerCP-Cy5.5	695/40
		Alexa Fluor® 488	530/30
ERATE		FITC	530/30
MODERATE		BD Horizon V450	450/50
		Pacific Blue™	450/50
		Alexa Fluor® 700	730/45
		PerCP	695/40
×		APC-Cy7	780/60
D		AmCyan	525/20
		BD Horizon V500	525/20
		BD APC-H7	780/60

2. Staining intensity

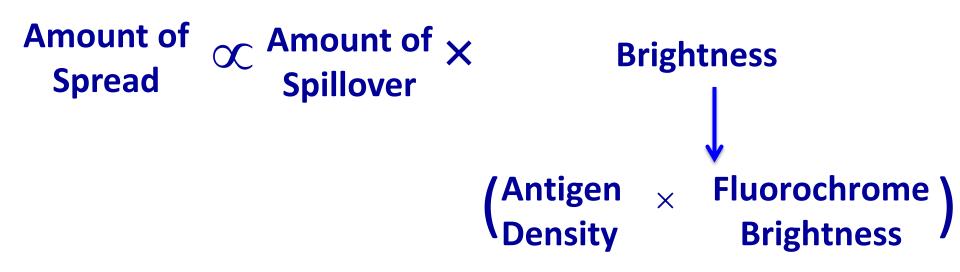
B. Antigen Density

Here it can be seen that

as the intensity of PE staining increases due to increased antigen density

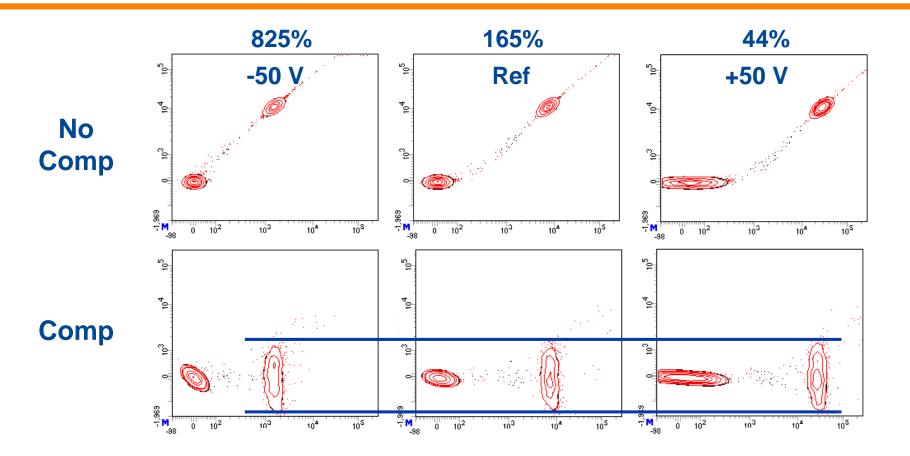
so does the PE spread into the PE-CF594 channel

This makes it difficult to distinguish bright PE positive cells that are also dimly positive for PE-CF594.

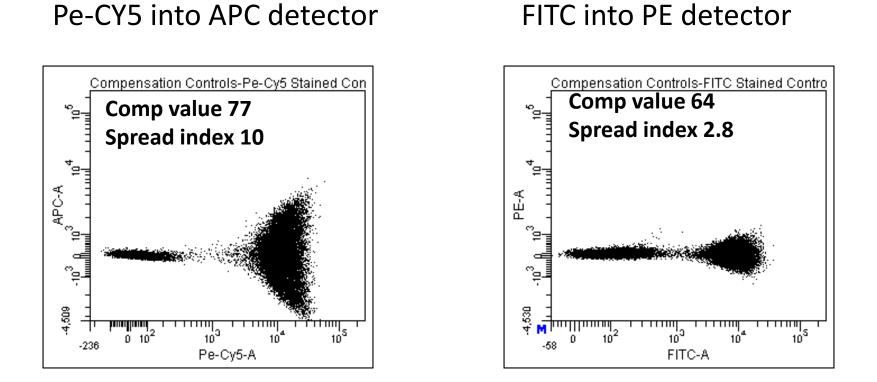

The PE-CF594 cells must be very positive to be resolved.

3. Cytometer differences

Fluorochrome brightness varies from one cytometer to the next Even in a supposedly identical cytometer


Fluorochrome	Brightness	Brightness	Stain	index
	x 10⁵	relative to PE	Cytometer 1	Cytometer 2
PE	16	100%	348	262
PeCy5	NA	NA	180	131
APC	4.7	29%	238	281
FITC	0.4	2%	132	61
BV421	16	100%	264	145

Spread variables


More colors = more spread = more problems Spread is additive: the sum of all fluorochrome spreads into each channel

Spread is not affected by PMT or Comp values

These is the same tube run at 3 different PMT Voltages They have the same spread into the other detector

Spillover Spread index vs Compensation

Spread is not necessarily reflected by the compensation value can have similar compensation value between different parameters but very different SSI!

How to assess Spread due to Spillover

Calculation of Spillover Spread is very useful to evaluate potential problems due to spread in the choice of fluorochromes for your own cytometer.

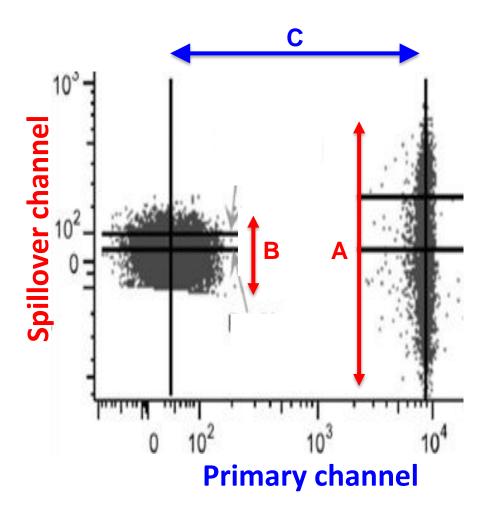
- Manual calculation according to Nguyen et al
- Automatic calculation using Flowjo 9

Both methods use compensated single color controls

Generation of a Spillover Spread Matrix (SSM) across all detectors SSM valid across compensation and gain changes SSM valid until laser, filter or detector change

TECHNICAL NOTE

Quantifying Spillover Spreading for Comparing Instrument Performance and Aiding in Multicolor Panel Design

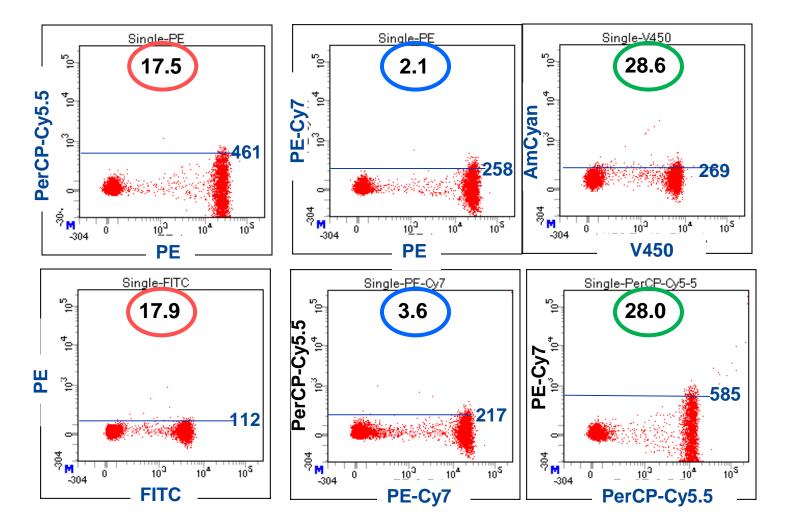

Richard Nguyen,¹ Stephen Perfetto,¹ Yolanda D. Mahnke,² Pratip Chattopadhyay,² Mario Roederer^{2*}

¹Flow Cytometry Core, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland

²ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland Abstract

After compensation, the measurement errors arising from multiple fluorescences spilling into each detector become evident by the spreading of nominally negative distributions. Depending on the instrument configuration and performance, and reagents used, this "spillover spreading" (SS) affects sensitivity in any given parameter. The degree of SS had been predicted theoretically to increase with measurement error, i.e., by the

Manual Calculation (Nguyen)



takes in account:

1. difference in spread of the (A) positive vs (B) negative populations in the spillover channel

2. normalized to the (C) median intensity difference between the two populations in the primary channel.

Similar compensation: different spread

Just because you have a high compensation value does not mean you have high spread

Spillover Spread Matrix (Flowjo)

Detec	Detector		PE	PerCP	PE-Cy7	APC	APC-H7	V450	V500
Fluorochrome	Stain Index	B527/32	B586/42	B700/54	B783/56	R660/10	R783/56	V448/45	V528/45
FITC	583		1.41	0.37	0.72		0.11		2.77
BB515	569		1.50	0.26	0.48				1.10
PE	2402	0.21		1.11	1.76				0.37
PE-Cy5	2558		0.36		10.14	96.57	30.39		
PerCP	174		0.15		5.86	2.20	2.01		
PerCP-Cy5.5	355				11.05	2.26	13.78		
PE-Cy7	1409		0.16	0.12			10.32		
APC	2072			0.84	0.80		2.67		
Alexa 647	1875			0.68	0.58		4.45		
APC-Cy7	578				3.50	0.93			
APC-H7	826				2.46	0.33			
Pac Blue	100								2.18
V450	103					0.12	0.19		1.86
BV421	680								1.67
V500									
BV510	154	0.26	0.13		0.16				

Optimize multicolor panels for fluorochrome-combinations that show only low spread in channels with co-expressed markers (especially for highly expressed antigens)

Be careful using fluorochrome-combinations with significant or high spread into other detectors for antigens that are expressed on the same cell.

If combination cannot be avoided, try to use markers that are not co-expressed.

Spread Matrix: Fortessa X-20: PE-Cy5

Detec	ctor	BV421	BV510	BV605	BV650	BV711	BV786	FITC	PerCP	BUV395	BUV496	APC	Alexa 700	APC-H7	PE	PE-CF594	PE-Cy5	PE-Cy7
Fluorochrome	Stain Index	V450/50	V525/50	V610/20	V670/30	V710/50	V780/60	B525/50	B695/40	UV1	UV2	R670/30	R730/45	R780/60	YG586/15	YG610/20	YG670/30	YG780/60
Pac Blue	29		1.9	1.6	1.2	0.8	0.6				0.6		0.5		0.3	0.3		0.2
V450	44		1.6	1.4	0.6	0.9	0.9				0.9		0.8	0.4			0.4	
BV421	268		1.0	0.8	0.6	0.4	0.4		0.1		0.4		0.4			0.1		0.1
V500	41	0.3		3.4	2.9	2.0	1.4	0.3	0.4		0.9		1.4			0.8		
BV510	127	0.8		5.0	4.5	3.2	2.5		0.7	0.2	2.3	0.7	2.7		0.2	1.3	0.2	
BV605	110	0.7			7.4	5.6	3.8		3.3		0.3	3.0	4.7	0.2	1.6	4.8	2.7	1.8
BV650	188	0.7		3.0		7.5	5.0		2.3		0.3	5.3	7.9	1.2	0.1	1.0	1.9	1.2
BV711	118	0.8		0.5	2.6		9.6		3.6		0.4	2.5	16.6	3.1			0.5	1.4
BV786	201	1.0	0.2	0.4	0.7	1.3			0.3		0.2	0.6	1.7	2.6				1.2
FITC	38		0.7	0.6	0.7	0.6	0.4		1.8		0.7		0.5				0.4	
BB515	82		0.4	0.3	0.3	0.3	0.2		1.0		0.7							0.2
PerCP	16			2.2	13.0	5.5	4.2				0.7	8.1	7.3	1.2		0.3	5.6	2.7
PerCP-Cy5.5	42			1.0	5.5	7.5	5.3				0.4	5.4	8.7	2.3			2.3	3.3
BUV395	159			0.2	0.5	0.3			0.3		0.9				0.1		0.3	
BUV496	107	0.3	3.0	1.6	1.1	0.8	0.6	1.2	0.2	2.9			0.8		0.1	0.4		
APC	149			0.4	2.4	1.7	1.0		3.4		0.2		11.9	2.5		0.3	3.1	1.6
Alexa 647	182			0.1	0.4	0.5	0.4		1.4		0.1		10.6	2.6			1.1	1.1
Alexa 700	23			0.2	0.3	1.3	1.3		0.7		0.3	1.8		3.0			0.3	1.4
APC-Cy7	27				0.4	0.5	2.9		0.7			3.2	5.0				0.7	5.2
APC-H7	58				0.4	0.5	2.9		0.7		0.3	1.3	3.2			0.2	0.4	4.5
PE	313		0.2	2.9	2.3	2.4	0.8	1.5	6.1		0.2	4.2	1.1			10.7	4.0	1.9
PE-CF594	253	0.2		2.4	2.5	2.8	1.0		7.7		0.2	5.3	1.4	0.2	1.6		4.8	2.7
PE-Cy5	265	0.4		1.4	8.5	7.0	2.0		20.4			18.8	12.4	2.5	0.6	0.9		5.4
PE-Cy7	461				0.1	0.3	3.0		0.5		0.2	0.3	1.0	2.1	0.4	0.6	0.3	

PE-Cy5: high spread into a lot of channels, receives some spread Al700: receives a lot of spread

Spread Matrix: Fortessa X-20: BV421

Detec	ctor	BV421	BV510	BV605	BV650	BV711	BV786	FITC	PerCP	BUV395	BUV496	APC	Alexa 700	APC-H7	PE	PE-CF594	PE-Cy5	PE-Cy7
Fluorochrome	Stain Index	V450/50	V525/50	V610/20	V670/30	V710/50	V780/60	B525/50	B695/40	UV1	UV2	R670/30	R730/45	R780/60	YG586/15	YG610/20	YG670/30	YG780/60
Pac Blue	29		1.9	1.6	1.2	0.8	0.6				0.6		0.5		0.3	0.3		0.2
V450	44		1.6	1.4	0.6	0.9	0.9				0.9		0.8	0.4			0.4	
BV421	268		1.0	0.8	0.6	0.4	0.4		0.1		0.4		0.4			0.1		0.1
V500	41	0.3		3.4	2.9	2.0	1.4	0.3	0.4		0.9		1.4			0.8		
BV510	127	0.8		5.0	4.5	3.2	2.5		0.7	0.2	2.3	0.7	2.7		0.2	1.3	0.2	
BV605	110	0.7			7.4	5.6	3.8		3.3		0.3	3.0	4.7	0.2	1.6	4.8	2.7	1.8
BV650	188	0.7		3.0		7.5	5.0		2.3		0.3	5.3	7.9	1.2	0.1	1.0	1.9	1.2
BV711	118	0.8		0.5	2.6		9.6		3.6		0.4	2.5	16.6	3.1			0.5	1.4
BV786	201	1.0	0.2	0.4	0.7	1.3			0.3		0.2	0.6	1.7	2.6				1.2
FITC	38		0.7	0.6	0.7	0.6	0.4		1.8		0.7		0.5				0.4	
BB515	82		0.4	0.3	0.3	0.3	0.2		1.0		0.7							0.2
PerCP	16			2.2	13.0	5.5	4.2				0.7	8.1	7.3	1.2		0.3	5.6	2.7
PerCP-Cy5.5	42			1.0	5.5	7.5	5.3				0.4	5.4	8.7	2.3			2.3	3.3
BUV395	159			0.2	0.5	0.3			0.3		0.9				0.1		0.3	
BUV496	107	0.3	3.0	1.6	1.1	0.8	0.6	1.2	0.2	2.9			0.8		0.1	0.4		
APC	149			0.4	2.4	1.7	1.0		3.4		0.2		11.9	2.5		0.3	3.1	1.6
Alexa 647	182			0.1	0.4	0.5	0.4		1.4		0.1		10.6	2.6			1.1	1.1
Alexa 700	23			0.2	0.3	1.3	1.3		0.7		0.3	1.8		3.0			0.3	1.4
APC-Cy7	27				0.4	0.5	2.9		0.7			3.2	5.0				0.7	5.2
APC-H7	58				0.4	0.5	2.9		0.7		0.3	1.3	3.2			0.2	0.4	4.5
PE	313		0.2	2.9	2.3	2.4	0.8	1.5	6.1		0.2	4.2	1.1			10.7	4.0	1.9
PE-CF594	253	0.2		2.4	2.5	2.8	1.0		7.7		0.2	5.3	1.4	0.2	1.6		4.8	2.7
PE-Cy5	265	0.4		1.4	8.5	7.0	2.0		20.4			18.8	12.4	2.5	0.6	0.9		5.4
PE-Cy7	461				0.1	0.3	3.0		0.5		0.2	0.3	1.0	2.1	0.4	0.6	0.3	

BV421: very little spread into other channels, receives very little spread

Spillover Spread Summary

The amount of spread due to **spillover** depends on

Amount of spillover between fluorochromes

Staining intensity:

Fluorochrome brightness and antigen density

Cytometer characteristics spread differs from cytometer to cytometer